Breadcrumb
Smart Saliency Detection for Prosthetic Vision
People with visual impairments often have difficulty locating misplaced objects. This can be a major barrier to their independence and quality of life. Retinal prostheses can restore some vision to people with severe vision loss. We introduce a novel real-time system for locating any misplaced objects for people with visual impairments using retinal prostheses. The system combines One For All (OFA) for Visual Grounding and Google Speech Recognition to identify the object to be located. It then uses an image processing technique called grabCut to extract the object from the background to
Unravelling Diabetes-related Pathways Using 16S rRNA Microbiome Data from Human Gut and Nasal Cavity
Type 2 Diabetes (T2D) is a complex chronic illness that affects around 90% of diabetic patients worldwide. Prediabetes is an elementary phase for T2D that is recommended to be early diagnosed to prevent its progression. In this study, we used 16S rRNA data from the gut and nasal cavity of prediabetic and control patients to identify common and exclusive diabetic pathways for each body site. Furthermore, using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) as well as MicobiomeExplorer in the pathway enrichment analysis, we also identified the
From Gestures to Audio: A Dataset Building Approach for Egyptian Sign Language Translation to Arabic Speech
The communication barriers faced by people with disabilities, particularly the deaf or hard of hearing, nonverbal, deaf-mute, and blind have a significant impact on their quality of life and social inclusion. Our research aims to provide real-time translation from sign language to speech and vice versa. The ability to provide real-time speech-to-text and text-to-sign language translation will help alleviate these barriers, improve communication, and increase social inclusivity for this community ensuring they are not left out in conversations and social interactions. A significant amount of
Pirates at ArabicNLU2024: Enhancing Arabic Word Sense Disambiguation using Transformer-Based Approaches
This paper presents a novel approach to Arabic Word Sense Disambiguation (WSD) leveraging transformer-based models to tackle the complexities of the Arabic language. Utilizing the SALMA dataset, we applied several techniques, including Sentence Transformers with Siamese networks and the SetFit framework optimized for few-shot learning. Our experiments, structured around a robust evaluation framework, achieved a promising F1-score of up to 71%, securing second place in the ArabicNLU 2024: The First Arabic Natural Language Understanding Shared Task competition. These results demonstrate the
Genomic image representation of human coronavirus sequences for COVID-19 detection
Coronavirus (CoV) disease 2019 (COVID-19) is a severe pandemic affecting millions worldwide. Due to its rapid evolution, researchers have been working on developing diagnostic approaches to suppress its spread. This study presents an effective automated approach based on genomic image processing (GIP) techniques to rapidly detect COVID-19, among other human CoV diseases, with high acceptable accuracy. The GIP technique was applied as follows: first, genomic graphical mapping techniques were used to convert the genome sequences into genomic grayscale images. The frequency chaos game
Interactive Web-Based Services for Metagenomic Data Analysis and Comparisons
Recently, sequencing technologies have become readily available, and scientists are more motivated to conduct metagenomic research to unveil the potential of a myriad of ecosystems and biomes. Metagenomics studies the composition and functions of microbial communities and paves the way to multiple applications in medicine, industry, and ecology. Nonetheless, the immense amount of sequencing data of metagenomics research and the few user-friendly analysis tools and pipelines carry a new challenge to the data analysis. Web-based bioinformatics tools are now being developed to facilitate the
Computational Microarray Gene Selection Model Using Metaheuristic Optimization Algorithm for Imbalanced Microarrays Based on Bagging and Boosting Techniques
Genomic microarray databases encompass complex high dimensional gene expression samples. Imbalanced microarray datasets refer to uneven distribution of genomic samples among different contributed classes which can negatively affect the classification performance. Therefore, gene selection from imbalanced microarray dataset can give rise to misleading, and inconsistent nominated genes that would alter the classification performance. Such unsatisfactory classification performance is due to the skewed distribution of the samples across the microarrays toward the majority class. In this paper, we
Uni-Buddy: A Multifunctional AI-Powered Assistant for Enhancing University Life: A Use Case at Nile University
Uni-Buddy is an advanced AI system developed to simplify university life at Nile University. It efficiently handles questions in everyday language, accesses real-time university databases, and simultaneously provides accurate responses for multiple users. Its goals include assisting with course registration, academic advising, financial inquiries, campus navigation, and research support. The evaluation demonstrates Uni-Buddy's user-friendly design, effective navigation, language comprehension, and database connectivity proficiency. Compared to similar studies, it stands out for its ease of use
The Melody of Silent Mutations: Microbiome Adaptation Across the Subduction Zone
Silent mutations generate synonymous codons that encode the same amino acid however, they may be silent yet operative. These synonymous codons are used in unequal frequencies resulting in a phenomenon known as codon usage bias (CUB). It drives gene expression towards highly expressed and adaptation genes. In this study we investigated CUB in one of the largest, most dynamic exotic niches, the volcanic subduction zones in Costa Rica. CUB analysis in such challengingly inaccessible sites can help distinguish highly expressed genes under certain environmental factors, elucidating molecular
Revolutionizing Cancer Diagnosis Through Hybrid Self-supervised Deep Learning: EfficientNet with Denoising Autoencoder for Semantic Segmentation of Histopathological Images
Machine Learning technologies are being developed day after day, especially in the medical field. New approaches, algorithms and architectures are implemented to increase the efficiency and accuracy of diagnosis and segmentation. Deep learning approaches have proven their efficiency; these approaches include architectures like EfficientNet and Denoising Autoencoder. Accurate segmentation of nuclei in histopathological images is essential for the diagnosis and prognosis of diseases like cancer. In this paper, we propose a novel method for semantic segmentation of nuclei using EfficientNet and
Pagination
- Previous page ‹‹
- Page 15
- Next page ››