bbabanner.jpg

Filter by

A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization

In this paper we present a novel framework for geolocalizing Unmanned Aerial Vehicles (UAVs) using only their onboard camera. The framework exploits the abundance of satellite imagery, along with established computer vision and deep learning methods, to locate the UAV in a satellite imagery map. It utilizes the contextual information extracted from the scene to attain increased geolocalization

Artificial Intelligence
Software and Communications

Combining lexical features and a supervised learning approach for arabic sentiment analysis

The importance of building sentiment analysis tools for Arabic social media has been recognized during the past couple of years, especially with the rapid increase in the number of Arabic social media users. One of the main difficulties in tackling this problem is that text within social media is mostly colloquial, with many dialects being used within social media platforms. In this paper, we

Artificial Intelligence
Software and Communications

MoArLex: An Arabic Sentiment Lexicon Built Through Automatic Lexicon Expansion

Research addressing Sentiment Analysis has witnessed great attention over the last decade especially after the huge increase in social media networks usage. Social networks like Facebook and Twitter generate an incredible amount of data on a daily basis, containing posts that discuss all kinds of different topics ranging from sports and products to politics and current events. Since data generated

Artificial Intelligence

Using deep neural networks for extracting sentiment targets in arabic tweets

In this paper, we investigate the problem of recognizing entities which are targeted by text sentiment in Arabic tweets. To do so, we train a bidirectional LSTM deep neural network with conditional random fields as a classification layer on top of the network to discover the features of this specific set of entities and extract them from Arabic tweets. We’ve evaluated the network performance

Artificial Intelligence

Emotional tone detection in Arabic tweets

Emotion detection in Arabic text is an emerging research area, but the efforts in this new field have been hindered by the very limited availability of Arabic datasets annotated with emotions. In this paper, we review work that has been carried out in the area of emotion analysis in Arabic text. We then present an Arabic tweet dataset that we have built to serve this task. The efforts and

Artificial Intelligence

Predicting all star player in the national basketball association using random forest

National Basketball Association (NBA) All Star Game is a demonstration game played between the selected Western and Eastern conference players. The selection of players for the NBA All Star game purely depends on votes. The fans and coaches vote for the players and decide who is going to make the All Star roster. A player who continues to receive enough votes in following years will play more All

Artificial Intelligence

Malicious VBScript detection algorithm based on data-mining techniques

Malware attacks are amongst the most common security threats. Not only malware incidents are rapidly increasing, but also the attack methodologies are getting more complicated. Moreover malware writers expand in using different platforms and languages. This raises the need for new detection methods which support more reliable, low resource consuming and fast solutions. In this paper, a new

Artificial Intelligence

Correlation between protocol selection and packet drop attack severity in ad hoc networks

Mobile Ad hoc Network (MANET) are self-configuring, dynamic, networks that consist of nodes with various capabilities communicating through a wide spectrum of frequencies. Such flexibility in infrastructure and design comes with great risks in form of attacks on its nodes and the routing protocols that connect the network together. The aim of this paper is to explore the correlation between the

Artificial Intelligence

Internet of Things security framework

For the past decade, Internet of Things (IoT) had an important role in our lives. It connects a large number of embedded devices. These devices fulfill very difficult and complicated tasks, which facilitate our work. Till now the security of IoT faces many challenges such as privacy, authentication, confidentiality, trust, middleware security, mobile security and policy enforcement. In order to

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

A computed tomography-based planning tool for predicting difficulty of minimally invasive aortic valve replacement

OBJECTIVES Minimally invasive aortic valve replacement has proven its value over the last decade by its significant advancement and reduction in mortality, morbidity and admission time. However, minimally invasive aortic valve replacement is associated with some on-site difficulties such as limited aortic annulus exposure. Currently, computed tomography scans are used to evaluate the anatomical

Artificial Intelligence